Defining NADH-Driven Allostery Regulating Apoptosis-Inducing Factor

|

Apoptosis-inducing factor (AIF) is critical for mitochondrial respiratory complex biogenesis and for mediating necroptotic parthanatos; these functions are seemingly regulated by enigmatic allosteric switching driven by NADH charge-transfer complex (CTC) formation. In this paper the authors define molecular pathways linking AIF’s active site to allosteric switching regions by characterizing dimer-permissive mutants using small-angle X-ray scattering (SAXS) and crystallography and by probing AIF-CTC communication networks using molecular dynamics simulations. Collective results identify two pathways propagating allostery from the CTC active site: (1) active-site H454 links to S480 of AIF’s central β-strand to modulate a hydrophobic border at the dimerization interface, and (2) an interaction network links AIF’s FAD cofactor, central β-strand, and Cβ-clasp whereby R529 reorientation initiates C-loop release during CTC formation. This knowledge of AIF allostery and its flavoswitch mechanism provides a foundation for biologically understanding and biomedically controlling its participation in mitochondrial homeostasis and cell death.

PMID_27818101_sm.png

Brosey CA, Ho C, Long WZ, Singh S, Burnett K, Hura GL, Nix JC, Bowman GR, Ellenberger T, Tainer JA. “Defining NADH-Driven Allostery Regulating Apoptosis-Inducing Factor.” Structure 2016 Dec 06 ;24(12)

ALS Ring Status

loading ...

Funding

Archives

Powered by Movable Type 5.2.13

January 2018

Sun Mon Tue Wed Thu Fri Sat
  1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31