Formation of repressive complex in the mammalian circadian clock is demoted by the secondary pocket of CRY1

Formation of repressive complex in the mammalian circadian clock is demoted by the secondary pocket of CRY1

In this paper, the authors show that CRY1, a protein coding gene that activates circadian gene expression and metabolic states and circadian oscillators, binds directly to the PAS domain core of CLOCK:BMAL1. Precise control of CLOCK:BMAL1 activity by coactivators and repressors establishes the ~24 hr periodicity of gene expression. Integrative modeling and solution X-ray scattering studies (conducted at the SIBYLS beamline 12.3.1) irrefutably position a key loop of the CLOCK PAS-B domain in the secondary pocket of CRY1, analogous to the antenna chromophore-binding pocket of photolyase. This study is significant for understanding the clock mechanism as fundamental for the development and application of therapies for circadian-related disorders.
SAXS_Profile_CLOCK _centered.png

SAXS profile of CRY1:CLOCK:BMAL1 repressive complex.

(A) Scattering traces of CRY1:CLOCK:BMAL1 ternary complex (CCB) at different con- centrations are shown. These scattering plots were merged to generate the dataset as the input for FoXSDock. (B) Guinier analysis of CCB shows little or no aggregation of sample. SAXS-calculated molecular weight of the ternary complex is 113 kDa. (C) Kratky plot shows the CCB complex indicates a folded mass with an elongated shape. (D) PDB of FoXSDock HADDOCK driven model that is among the top 20 nearly degenerate docking structures, χ = 2.74.


Michael AK, Fribourgh L, Chelliah Y, Sandate C, Hura GL, Schneidman-Duhovny, Tripathi SM, Takahashi JS, Partch CL [“Formation of a repressive complex in the mammalian circadian clock is mediated by the secondary pocket of CRY1”](http://www.pnas.org/content/early/2017/01/30/1615310114.full.pdf?sid=22e8f8bf-7098-4c1c-a81a-e26fb35c50bf) PNAS 2017 Jan 31, doi:10.1073/pnas.1615310114